

Name : _____

Grade: VIII

Subject: Mathematics

Chapter: 3. Understanding Quadrilaterals

Objective Type Questions

1 Marks.

I. Multiple choice questions

1. What is the sum of all the angels of a pentagon?

[NCERT Exemplar]

- a. 180⁰
- b. 360⁰
- c. 540°
- d. 720°
- 2. The number of sides of a regular polygon where each exterior angle has a measure of 45° is:

[NCERT Exemplar]

a. 8

- b. 10
- c. 4

- d. 6
- 3. Sum of the interior angles of a regular polygon of n sides is:

[NCERT Exemplar]

- a. n x 90°
- b. (n 2) x 90°
- c. n x 180°
- d. (n 2) x 180°

4. In the trapezium ABCD, the measure of ZD is

[NCERT Exemplar]

- a. 55°
- b. 115°
- c. 135°
- d. 125°

5. PQRS is a square. PR and SQ intersect at 0. Then $\angle POQ$ is a

[NCERT Exemplar]

- a. Right angle
- b. Straight angle
- c. Reflex angle
- d. Complet e angle
- 6. Which of the following is not true for an exterior angle of a regular polygon with n sides?

[NCERT Exemplar]

- a. Each exterior angle = $\frac{360^{\circ}}{n}$
- b. Exterior angle = 180° interior angle

C. $n = \frac{360^0}{exterior \ angles}$

d. Each exterior angle = $\frac{(n-2) \times 180^{0}}{n}$

1. c 2. a 3. d 4. d 5. a	6. d
--------------------------	------

1. Which of the following is a property of a parallelogram?

a. Opposit e sides ar e par allel

b. The diagonals	bisect each other at	right angles							
c. The diagonals are perpendicular to each other									
d. All angles ar e	equal								
2. Which of the followi	ng figures satisfythe	efollowing properties	?[NCERT Exemplar]						
All sides areOpposite side	congruent. les are parallel.	— All an	gles are right angles.						
P	Q Q	R	S						
a. P	b. Q	c. R	d. S						
3. A quadrilat eral whos	e all sides, diagonals	<mark>and angl</mark> es are equal is	[NCERT Exemplar]						
a. squar e	b.trapezium	c. rect angles	d. rhombus						
4. The sum of all exteri	or angles of a triangl	e is							
a. 180°	b. 360°	c. 540 ⁰	d. 720 ⁰						
5. If the diagonals of a	a quadrilat er al ar e eq	ual and bisect each ot	her, then the quadrilateral						
is a			[NCERT Exemplar]						
(a) rhombus	(b) rect angle	(c) square	(d) par allelogram						
6. How many diagonals o	does a hexagon have?	[NCERT Exemplar]							
(a) 9	(a) 9 (b) 8		(d) 6						
7. What is the maximur	n number of o <mark>bt</mark> use a	ngles that a qu <mark>ad</mark> rilato	eral can have?						
			[NCERT Exemplar]						
(a) 1	(b) 2	(c) 3	(d) 4						
8. How many non-overla	pping triangles can w	e make in a n-gon (poly	ygon having n sides), by joining						
the vertices? (a) n - 1	(b) n - 2	(c) n - 3	[NCERT Exemplar] (d) n - 4						
			+35)° then the ratio of						
these angles is			[NCERT Exemplar]						
(a) 1:3	(b) 2:3	(c) 1:4	(d) 1:2						
		2	Created by Pinkz						

10. In Fig., ABCD and BDCE are parallelograms with common base DC. If BC $\!\perp$ BD

then $\angle BEC =$ [NCERT Exemplar]

11. In Fig., BEST is a rhombus. Then the value of y - x is

[NCERT Exemplar]

12. The closed curve which is also a polygon is

[NCERT Exemplar]

13. The sum of angles of a concave quadrilateral is

[NCERT Exemplar]

(a) mor e than 360°

(b) less than 360°

(c) equal to 360°

(d) twice of 360°

14. Which of the following can never be the measure of exterior angle of a regular polygon?

(Hint: Measure of exterior angle of a regular polygon should be a multiple of 360)

[NCERT Exemplar]

- (a) 22°
- (b) 36°

(b)

- $(c) 45^{\circ}$
- (d) 30°

15. PQRS is a trapezium in which PQ || SR and $\angle P = 130^{\circ}$, $\angle Q = 110^{\circ}$. Then $\angle R$ is equal to

[NCERT Exemplar]

- (a) 70°
- (b) 50°
- $(c) 65^{\circ}$
- (d) 55°

16. The number of sides of a regular polygon whose each interior angle of 135° is										
	[NCERT Exemplar]							Exemplar]		
(a)	6	(b) 7		(e) 8	(e) 8		(d) 9			
17. What is the sum of all angles of a hexagon? [NCERT Exemplar]										
(a)	180°	(b)	(b) 360° (c) 540° (d) 720°							
18. The ar	18. The angle between the two altitudes of a parallelogram through the same vertex of an									
obtuse angle of the parallelogram is 30°. The measure of the obtuse angle is										
	[NCERT Exe			Exemplar]						
(a)	100°	(b)	150°	(c) 10)5°	(d) 12	20°			
1. (a)	2. (b)	3. (a)	4. (b)	5. (b)	6. (a)	7. (c)	8. (b)	9. (a)		
10. (a)	11 (a)	12. (a)	13. (c)	14. (a)	15. (a)	16. (c)	17. (d)	18. (b)		
					1					
			I. Fill i	n the blank	(S					
1. The dia	gonals of a	arhombus bi	isect each	other at		[NCE	RT Exempl	ar]		
2. The sum of interior angles of a polygon of n sides is right angles. [NCERT Exemplar]										
3. All sides of a are equal and all angles are right angles. [NCERT Exemplar]										
4. If all sides of a quadrilateral are equal, it is a [NCERT Exemplar										
5. A square has sides of equal length and angles of equal measure, so it is										
a polyg	on.						[NCERT I	Exemplar]		
1. Right	angles	2. 2n - 4	4	3. Squar e	4.	Rhombus	5. F	legular		
			1.	True or F	alse					
1. All rect angles are parallelograms. [NCERT Exemplar]										
2. All squares are rectangles. [NCERT Exemplar]										
3. All angles of a trapezium are equal. [NCERT Exemplar]										
4. All kit es ar e squar e. [NCERT Exemplar]										
5. Slim of all the angle& of a quadrilateral is 180°. [NCERT Exemplar]										
6. If diagonals of a quadrilateral are equal, it must be a rectangle. [NCERT Exemplar]										
1. Tru	е	2. True	3. Fals	e 4	. False	5. Fals	e 6	i. False		

I. Very Short Answer Type Questions

- 1. Find the number of sides of a regular polygon, whose each exterior angle has a measure of 40°. [NCERT Exemplar]
- Sol. Since, the given polygon is a regular polygon.
 - .. Its each exterior angle is equal.
 - .. Sum of all the exterior angles = 360°
 - \therefore Number of exterior angles = $\frac{360^{\circ}}{40^{\circ}}$
 - \Rightarrow Number of sides = 9
- 2. Each interior angle of a polygon is 108°. Find the number of sides of the polygon.

[NCERT Exemplar]

Sol. Since each interior angle = 108°

So, exterior angle =
$$180^{\circ} - 108^{\circ} = 72^{\circ}$$

Number of sides =
$$\frac{360^{\circ}}{esterior\ angle} = \frac{360^{\circ}}{72^{\circ}} = 5$$

3. The four angles of a quadrilateral are in the ratio 3:4:5:6. Find the angles.

[NCERT Exemplar]

Sol. Let angles be 3x, 4x, 5x, 6x.

Thus, $3x + 4x + 5x + 6x = 360^{\circ}$, Since, sum of the angles of a quadrilateral is 360° .

So,
$$18x = 360^{\circ}$$

or,
$$x = 20^{\circ}$$

Thus, angles are 60°,80°,100°, 120°.

4. Two adjacent angles of a parallelogram are in the ratio 4: 5. Find their measures.

[NCERT Exemplar]

Sol. Let the angles be 4x and 5x.

Then,
$$4x + 5x = 180^{\circ} 9x = 180^{\circ}$$

$$x = 20^{\circ}$$

So, angles are $4 \times 20^{\circ} = 80^{\circ}$ and $5 \times 20^{\circ} = 100^{\circ}$.

5. Find x and $\angle 1$ in the following figure.

[NCERT Exemplar]

Sol. In the given figure $\angle 1 + 90^{\circ} = 180^{\circ}$ (linear pair)

$$\angle 1 = 90^{\circ}$$

Now, sum of exterior angles of a polygon is 360°.

Therefore,
$$x + 60^{\circ} + 90^{\circ} + 90^{\circ} + 40^{\circ} = 360^{\circ}$$

 $x + 280^{\circ} = 360^{\circ}$
 $x = 80^{\circ}$

- 6. The sides AB and CD of a quadrilateral ABCD are extended to points P and Q
 respectively. Is LADQ + LCBP = LA + LC ? Give reason.

 [NCERT Exemplar]
- Sol. Join AC, then

$$\angle CBP = \angle BCA + \angle BAC$$
 and $\angle ADQ = \angle ACD + \angle DAC$

(Exterior angles of triangles)

Ther ef or e,

$$\angle CBP + \angle ADQ = \angle BCA + \angle BAC + \angle ACD + \angle DAC$$

= $(\angle BCA + \angle ACD) + (\angle BAC + \angle DAC)$
= $\angle C + \angle A$

II. Very Short Answer Type Questions

1. ABCD is a quadrilateral in which AB = 5 cm, CD = 8 cm and the sum of angle A and angle D is 180° . What is the name of this quadrilateral?

Sol. Since =
$$\angle A + \angle D = 180^{\circ}$$

These are interior angles on the same side of transversal (AD).

Therefore AB||DC

Hence, ABCD is a trapezium.

2. Two adjacent angles of a parallelogram are in the ratio 1: 3. Find its angles.

[NCERT Exemplar]

Sol. Let the angles be x and 3x.

Then,
$$x + 3x = 180^{\circ}$$

 $4x = 180^{\circ} \implies x = 45^{\circ}$

So, angles are 45° and (3 x 45°) i.e., 135°.

3. A photo frame is in the shape of a quadrilateral with one diagonal longer than the other. Is it a rectangle? Why or why not?

[NCERT Exemplar]

Sol. No, it is not a rectangle. In a rectangle diagonals are equal.

4. In Fig. 3.24, find the value of x.

[NCERT Exemplar]

Sol. Sum of all exterior angles =
$$360^{\circ}$$

$$x + 286^{\circ} = 360^{\circ}$$
 \Longrightarrow

$$x = 360^{\circ} - 286^{\circ} = 74^{\circ}$$
.

- 5. The point of intersection of diagonals of a quadrilateral divides one diagonal in the ratio 1 : 2. Can it be a parallelogram? Why or why not? [NCERT Exemplar]
- **Sol.** No, it cannot be a parallelogram. Diagonals of parallelogram bisect each other i.e., in the ratio 1:1.
- 6. A playground in the town is in the form of a kite. The perimeter is 106 metres. If one of its sides is 23 metres, what are the lengths of other three sides?
- Sol. A kit e has two pairs of equal consecutive sides.

Other side =
$$23 \text{ m}$$

Sum of rest two sides =
$$106 - (23 + 23) = 60 \text{ m}$$

Length of other two sides are 30 m and 30 m.

Hence, the length of other three sides are 23 m, 30 m and 30 m.

I. Short Answer Type Questions

1. Find the value of x in the trapezium ABCD given below.

[NCERT Exemplar]

Sol. In the given trapezium ABCD, we have AB || CD

Also, sum of interior angles A and D is 180°.

$$\therefore$$
 $\angle A + \angle D = 180^{\circ}$

$$(x - 20^\circ) + (x + 40^\circ) = 180^\circ$$

$$2x^{\circ} + 20^{\circ} = 180^{\circ}$$

$$2x^{\circ} = 160^{\circ}$$

$$x^{\circ} = 80^{\circ}$$

8

2. Find the measure of angle x in the following figure :

[NCERT Exemplar]

Sol. The sum of interior angles of a quadrilateral = 360°

$$\therefore$$
 $x + 120^{\circ} + 130^{\circ} + 50^{\circ} = 360^{\circ}$

$$x + 300^{\circ} = 360^{\circ}$$

$$x = 360^{\circ} - 300^{\circ}$$

$$x = 60^{\circ}$$

3. Find the measure of x in the figure.

[NCERT Exemplar]

Sol. Sum of all the exterior angles of a quadrilateral = 360°

$$\therefore$$
 $x + 65^{\circ} + 115^{\circ} + 110 = 360^{\circ}$

$$x + 290^{\circ} = 360^{\circ}$$

or
$$x = 360^{\circ} - 290^{\circ}$$

$$\therefore x = 70^{\circ}$$

4. Find the values of x and y in the following parallelogram.

[NCERT Exemplar]

9

Sol. .. Opposit e angles of 11 gm ar e equal

$$\therefore$$
 6y = 120° y = 20°

Now,
$$5x + 10^{\circ} + 6y = 180^{\circ}$$

$$5x + 10^{\circ} + 6 \times 20^{\circ} = 180^{\circ}$$

$$5x = 180^{\circ} - 130^{\circ}$$

$$5x = 50^{\circ}$$

$$X = \frac{50^{\circ}}{5}$$

$$x = 10^{0}$$

5. Find the measure of exterior angle of a regular pentagon and an exterior angle of a regular decagon. What is the ratio between these two angles. [NCERT Exemplar]

Sol. Exterior angle of a regular pent agon =
$$\frac{360^{\circ}}{5^{\circ}}$$
 = 72°

Exterior angle of a regular decagon =
$$\frac{360^{\circ}}{5^{\circ}}$$
 = 36°

Ratio between these two =
$$\frac{72^{\circ}}{36^{\circ}}$$
 = 2 : 1

6. One of the diagonals of a rhombus and its sides are equal. Find the angles of the rhombus. [NCERT Exemplar]

Sol. Let PQRS be a rhombus such that its diagonal PR is equal to its side, that is, PQ = QR = RS = PS = PR So, $\triangle PRS$ and $\triangle APQR$ are equilateral.

$$\angle S = \angle Q = 60^{\circ}$$
 [Each angle of an equilateral triangle is 60°.]

and

$$\angle P = \angle 1 + \angle 2 = 60^{\circ} + 60^{\circ} = 120^{\circ} = \angle R$$

 $\angle S = \angle Q = 60^{\circ} \text{ and } \angle P = \angle R = 120^{\circ}$

- 7. The ratio of exterior angle to interior angle of a regular polygon is 1:4. Find the number of sides of the polygon. [NCERT Exemplar]
- Sol. Let the exterior angle of the polygon be x Then, the interior angle of

polygon =
$$180^{\circ} - x$$
 According to question,
$$\frac{x}{180^{\circ} - x} = \frac{1}{4}$$

$$\frac{x}{180^0 - x} = \frac{1}{4}$$

or,
$$4x = 180^{\circ} - x$$

or
$$5x = 180^{\circ}$$

or,
$$x = \frac{180^5}{5}$$

$$x = 36^{\circ}$$

Number of sides of polygon $\frac{360^0}{exterior\ angle}$

$$=\frac{360^{0}}{36^{0}}=10^{0}$$

8. If AM and CN are perpendiculars on the diagonal BD of a parallelogram ABCD,

Is AAMD ACNB? Give reason.

[NCERT Exemplar]

Sol. In \triangle AMD and \triangle CNB

$$AD = BC$$

(opposite side of parallelogram)

$$\angle DMB = \angle CNB = 90^{\circ}$$

$$\angle ADM = \angle NBC$$

(AD || BC and BD is transversal)

$$\triangle AMD = CNB$$

II. Short Answer Type Questions

1. In rhombus BEAM, find \angle AME and \angle AEM.

[NCERT Exemplar]

Sol. Since diagonals of rhombus bisect each other at right angles (Fig. 3.25)

In ∠AOM,

$$\angle AOM + \angle OAM + \angle AMO = 180^{\circ}$$

$$90^{\circ} + 70^{\circ} + \angle AMO = 180^{\circ}$$

$$160^{\circ} + \angle AMO = 180^{\circ}$$

$$\angle AMO = 180^{\circ} - 160^{\circ} = 20^{\circ}$$

$$\angle AME = \angle AMO = 20$$

In∠AEM,

(Sides of rhombus are equal)

 $\angle AME = \angle AEM$

(Angles opposite to equal sides)

∴ ∠AEM = 20°

- 2. In the given parallelogram YOUR (Fig.), \angle RUO = 120° and OY is extended to point S such that \angle SRY = 50° Find \angle YSR. [NCERT Exemplar]
- **Sol.** $\angle RYO = \angle RUO = 120^{\circ}$

(Opposite angles of parallelogram are equal)

$$\Rightarrow$$
 $\angle RYS = 180^{\circ} - 120^{\circ} = 60^{\circ}$

In ΔRSY,

$$\angle$$
YSR + \angle RYS + \angle SRY = 180 $^{\circ}$

$$\angle$$
YSR + 60° + 50° = 180°

$$\angle YSR + 110^{\circ} = 180^{\circ}$$

$$\angle$$
YSR = 180° - 110° = 70°

- 3. Quadrilateral EFGH is a rectangle in which J is the point of intersection of the diagonals. Find the value of x if JF = 8x + 4 and EG = 24x 8. [NCERT Exemplar]
- **Sol.** EG = 24x 8

$$HF = 2(8x + 4) = 16x + 8$$

Since diagonals of rectangle are equal,

$$\therefore$$
 EG = HF

or
$$24x - 8 = 16x + 8$$

or
$$24x - 16x = 8 + 8$$

or
$$8x = 16$$

or
$$x = 2$$

4. Find the values of x and y in the adjoining kite.

But
$$m(B) = m(D)$$
 (Property of a quadrilateral i.e., kite)

In ΔABCD,

$$x + y + 60^{\circ} + 110^{\circ} = 360^{\circ}$$

$$x + 110^{\circ} + 60^{\circ} + 110^{\circ} = 360^{\circ}$$

$$x + 280^{\circ} = 360^{\circ}$$

$$x = 360^{\circ} - 280^{\circ} = 80^{\circ}$$

5. Two angles of a quadrilateral are each of measure 75° and the other two angles are equal. What is the measure of these two angles? Name the possible figure so formed.

[NCERT Exemplar]

Sol. Let equal angles be x

$$\therefore$$
 $x + x + 75^{\circ} + 75^{\circ} = 360^{\circ}$

$$2x + 150^{\circ} = 360^{\circ}$$

$$2x = 210^{\circ} x = 105^{\circ}$$

Each equal angle is 105°. The possible

figure so formed is parallelogram.

6. In trapezium HARE, EP and RP are bisectors of ∠E and ∠R respectively.

Find ∠HAR and ∠EHA.

[NCERT Exemplar]

Since EP is bisect or of ∠HER Sol.

$$\therefore$$
 \angle HEP = \angle PER = 25°

$$\angle$$
HER = \angle HEP + \angle PER = 25° + 25° = 50°

Now, ER | | HA and EH is transversal

$$\angle$$
HER + \angle EHA = 180°

(Interior angles on the same side of transversal)

$$50^{\circ} + \angle EHA = 180^{\circ}$$

$$\angle EHA = 180^{\circ} - 50^{\circ} = 130^{\circ}$$

Since PR is bisect or of ∠ERA

$$\angle$$
ERA = $2\angle$ ERP = $2 \times 30^{\circ} = 60^{\circ}$

Also, \angle ERA + \angle HAR = 180° (Interior angles on the same side of transversal)

13

$$60^{\circ} + LHAR = 180^{\circ}$$

- 7. In parallelogram MODE, the bisector of \angle M and \angle O meet at Q (Fig.), find the measure of \angle MQO.
- Sol. MODE is a par allelogram.

$$\angle$$
EMO + \angle DOM = 180°

(Interior angles on the same side of transversal)

$$\frac{1}{2} \angle EMO + \angle DOM = \frac{1}{2} \times 180^{\circ}$$

$$\angle 1 + \angle 2 = 90^{\circ}$$

In ΔMOQ,

$$\angle 1 + \angle 2 + \angle MQO = 180^{\circ}$$

$$90^{\circ} + \angle MQO = 180^{\circ}$$

$$\angle MQO = 180^{\circ} - 90^{\circ} = 90^{\circ}$$

8. A Rangoli has been drawn on a floor of a house. ABCD and PQRS both are in the shape of a rhombus. Find the radius of semicircle drawn on each side of rhombus ABCD.

Measurements are in cm. [NCERT Exemplar]

Sol. Diagonals of rhombus bisects each other at right angle.

$$OA = 2 + 2 = 4 \text{ cm}$$
 and $OB = 2 + 1 = 3 \text{ cm}$

In $\triangle AOB$, $\triangle AOB = 90^{\circ}$

$$\therefore$$
 AB² = 0A² + OB² (Using Pythagor as theorem)

$$=4^2+3^2=16+9=16+9$$

$$AB = \sqrt{25} = 5$$
 cm.

This is the diameter of semicircle.

Radius =
$$\frac{5}{2}$$
 = 2.5 cm.

9. The angle between the two altitudes of a parallelogram through the vertex of an obtuse angle of the parallelogram is 45°. Find the angles of the parallelogram.

[NCERT Exemplar]

Sol. Let ABCD is a parallelogram in which $AE \perp BC$ and $AF \perp DC$

$$\angle AEC + \angle ECF + \angle CFA + \angle EAF = 360^{\circ}$$

$$90^{\circ} + \angle ECF + 90^{\circ} + 45^{\circ} = 360^{\circ}$$

$$\angle ECF = 360^{\circ} - 225^{\circ}$$

$$\angle ECF = 135^{\circ} \Rightarrow \angle C = 135^{\circ}$$

$$\angle A = \angle C = 135^{\circ}$$
 (Opposite angles of parallelogram)

$$\angle B + \angle C = 180^{\circ}$$
 (Adj acent angles of parallelogram)

$$\angle B + 135^{\circ} = 180^{\circ}$$

$$\angle B = 180^{\circ} - 135^{\circ} = 45^{\circ}$$

$$\angle D = \angle B = 45^{\circ}$$
 (Opposit e angles of par allelogram)

10. In Fig., FD || BCH AE and AC || ED. Find the value of x. [NCERT Exemplar]

Sol. In AABC,

$$\angle BAC + \angle ABC + \angle ACB = 180^{\circ}$$
 (Angle sum property)

$$52^{\circ} + 64^{\circ} + \angle ACB = 180^{\circ}$$

$$116^{\circ} + \angle ACB = 180^{\circ}$$

$$\angle ACB = 180^{\circ} - 116^{\circ} = 64^{\circ}$$

Since AE | BC and AC is transversal,

$$\angle CAE = \angle ACB = 64^{\circ}$$
 (Alternate angles)

$$64^{\circ} + x = 180^{\circ}$$

$$\Rightarrow$$
 x = 180° — 64° = 116°

[NCERT Exemplar]

Sol.
$$\angle A = \angle C$$

(Opposite angles of a parallelogram)

or
$$\frac{\angle A}{2} = \frac{\angle C}{2} \Rightarrow \angle 1 = \angle 2$$

But $\angle 2 = \angle 3$ (Alt er nat e angles)

64°

But they are a pair of corresponding angles

...(i)

From (i) and (ii)

Δ AXCY is a parallelogram.

I. Long Answer Type Questions

- 1. Two given angles of a parallelogram have equal measure. Find the measure of each of the angles of the parallelogram. [NCERT Exemplar]
- Sol. Let ABCD be a parallelogram such that adjacent

angles
$$\angle A = \angle B$$

Since,
$$\angle A + \angle B = 180^{\circ}$$

$$\therefore \qquad \angle A = \angle B = \frac{180^2}{2} = 90^\circ$$

Since, opposite angles of a parallelogram are equal.

$$\therefore$$
 $\angle A = \angle C = 90^{\circ}$

and
$$\angle B = \angle D = 90^{\circ}$$

Thus,
$$\angle A = 90^{\circ}, \angle B = 90^{\circ},$$

$$\angle C = 90^{\circ}$$
 and $\angle D = 90^{\circ}$

2. Construct a quadrilateral ABCD in which AB = AD = 5 cm, BC = CD = 7 cm and

[NCERT Exemplar]

Sol. Looking at the rough figure, draw a line segment BD = 6 cm. Taking B and D as centres and 5 cm radius, draw arcs to intersect at the point A, then taking B and D as centres and 7 cm radius, draw arcs in the opposite side of A to intersect at the point C. Join AB, AD and BC, DC. Then ABCD is the required quadrilateral. It is a kite.

3. In a parallelogram PQRS, the bisectors of LP and LQ meet at 0. Find LPOQ.

[NCERT Exemplar]

Sol. Since, OP and OQ are the bisectors of \angle P and \angle Q respectively.

So,
$$\angle OPQ = \frac{1}{2} \angle P$$
 and $\angle OQP = \frac{1}{2} \angle 2$

In∠POQ.

$$\angle OPQ + \angle PQO + \angle POQ = 180^{\circ}$$
 (Angle sum property)

i.e.,
$$\angle POQ = 180^{\circ} - \frac{1}{2} (\angle P + \angle Q)$$

= $180^{\circ} - \frac{1}{2} \times 180^{\circ}$
= 90°

4. In a quadrilateral ABCD, DO and CO are the bisectors of ∠D and ∠C respectively.

Prove that LCOD = $\frac{1}{2}$ [$\angle A + \angle B$].

[NCERT Exemplar]

Sol. In $\Delta \angle COD$, we have

$$\angle$$
COD + \angle 1 + \angle 2 = 180°

$$\Rightarrow \qquad \angle OOD = 180^{\circ} - [\angle 1 + \angle 2]$$

$$\Rightarrow \qquad \angle OOD = 180^{\circ} - \left[\frac{1}{2} \angle D + \frac{1}{2} \angle C \right]$$

$$\Rightarrow \angle COD = 180^{\circ} - \frac{1/2}{2} [\angle D + \angle C]$$

But
$$\angle A + \angle B + \angle C + \angle D = 360^{\circ}$$

$$\Rightarrow$$
 $\angle C + \angle D = 360^{\circ} - (\angle A + \angle B)$

⇒
$$\angle COD = 180^{\circ} - \frac{1}{2}[360^{\circ} - (\angle A + \angle B)]$$

= $180^{\circ} - \frac{1}{2}[360^{\circ}] + \frac{1}{2}[\angle A + \angle B]$
= $180^{\circ} - \frac{1}{2}[2A + \angle B]$

$$=\frac{1}{2}(\angle A + \angle B)$$

Thus, $\angle OOD = \frac{1}{2} [\angle A + \angle B]$

17

II. Long Answer Type Questions

1. In rectangle READ (Fig.), find \angle EAR, \angle RAD and \angle ROD.

[NCERT Exemplar]

Sol. We have,

$$60^{\circ} + \angle EOA = 180^{\circ}$$

$$\angle EOA = 180^{\circ} - 60^{\circ} = 120^{\circ}$$

Since diagonals of a rectangle are equal and they bisect each other, therefore, in ΔΕΟΑ we have

$$OE=O \Rightarrow S \angle 1 = \angle 2$$

(Angles opposite to equal sides)

Ι η ΔΕΟΑ

$$\angle 1 + \angle 2 + \angle EOA = 180^{\circ}$$

$$2\angle 2 + 120^{\circ} = 180^{\circ}$$

(Angle sum property)

$$2\angle 2 = 60^{\circ} \angle EAR = 30^{\circ}$$

Since each angle of a rectangle is a right angle,

$$\angle EAD = 90^{\circ}$$

$$\angle 2 + \angle 3 = 90^{\circ}$$

$$\angle 3 = 90^{\circ} - 30^{\circ} = 60^{\circ}$$

Now, $\angle ROD = \angle EOA = 120^{\circ}$ (Vertically opposite angles)

2. In parallelogram PQRS, 0 is the midpoint of SQ (Fig.). Find LS, LR, PQ, QR and diagonal PR. [NCERT Exemplar]

Sol.
$$\angle PQR + \angle RQY = 180^{\circ}(Linear pair)$$

$$\angle PQR + 60^{\circ} = 180^{\circ}$$

$$\angle PQR = 180^{\circ} - 60^{\circ} = 120^{\circ}$$

Now,
$$\angle S = \angle PSR = \angle PQR = 120^{\circ}$$

(Opposit e angles of par allelogram ar e equal)

Again,
$$\angle PQR + \angle R = 180^{\circ}$$
 (Adjacent angles of parallelogram)

$$120^{\circ} + \angle R = 180^{\circ}$$

$$\angle R = 180^{\circ} - 120^{\circ} = 60^{\circ}$$

PQ = SR = 15 cm (Opposite sides of parallelogram are equal)

$$QR = PS = 11 cm$$

Diagonal PR = 2(PO) (Diagonals of a parallelogram bisect each other)

$$= 2 \times 6 = 12 \text{ cm}$$

3. In parallelogram LOST, (Fig.) SNIOL and SM $_{\perp}$ LT . Find LSTM, LSON and LNSM

[NCERT Exemplar]

In ΔSTM,

$$\angle$$
SMT + \angle MST + \angle STM = 180°

(Angle sum property)
$$90^{\circ} + 40^{\circ} + \angle STM = 180^{\circ}$$

$$\angle$$
STM = 180° - 130° = 50°

In ΔOSN,

$$\angle$$
OSN + \angle ONS + \angle SON = 180° (Angle sum property)

$$\angle$$
OSN + 90° + 50° = 180°

$$\angle$$
OSN = 180° - 140° = 40°

Now, $\angle SOL + \angle OST = 180^{\circ}$ (Adjacent angles of parallelogram)

$$50^{\circ} + 40^{\circ} + \angle NSM + 40^{\circ} = 180^{\circ} (\bullet. \bullet \angle OST = \angle OSN + \angle NSM + \angle MST)$$

4. A diagonal of a parallelogram bisects an angle.

- (i) Will it also bisect the other angle?
- (ii) Is it a rhombus? Give reason.

Sol. Let ABCD be a parallelogram (Fig. 3.39) in which

$$\angle 1 = \angle 2$$

(i) $\angle 1 = \angle 4$ (Alt er nat e angles)

and
$$\angle 2 = \angle 3$$
 (Al

(Alt er nat e angles)

But $\angle 1 = \angle 2$

So, the diagonal will bisect the other angle.

(ii)
$$\angle 1 = \angle 2$$
 (Given)

$$\angle 2 = \angle 3$$
 (Alt er nat e angles)

$$\angle 1 = \angle 3$$

Hence, CD = DA (Sides opposite to equal angles are equal)

:. ABCD is a rhombus.

I. High Order Thinking Skills [HOTS] Questions.

- 1. (a) Prove that the interior angle of a regular pentagon is three times the exterior angle of a regular decagon.
 - (b) Is rectangle a regular polygon? Why?
- Sol. (a) We know that,

A pent agon has five sides, then n = 5

But each interior angle of a regular polygon = $\left(\frac{n-2}{n}\right) \times 180^{0}$

∴ Each interior angle of a regular pent agon = $\left(\frac{3}{5}\right) \times 180^{0}$

$$= 3 \times 36 = 108^{\circ}$$

and a decagon has 10 sides, then

Exterior angle of a regular decagon =
$$\left(\frac{360^{\circ}}{180^{\circ}}\right)$$
 = 36°

Therefore, interior angle of regular pentagon

= 3 x The exterior angle of a regular decagon

$$=3 \times 36^{\circ} = 108^{\circ}$$

(b) Yes, a rectangle is not a regular polygon because it is equiangular but not all sides are equal.

II. High Order Thinking Skills [HOTS] Questions.

1. In Fig. a ship, ABDH and CEFG are two parallelograms. Find the value of x.

[NCERT Exemplar]

Sol. Since ABDH is a parallelogram,

$$\angle B+ \angle BDH = 180^{\circ}$$

(Adjacent angles of parallelogram are supplementary)

Similarly, CEFG is a parallelogram.

$$\angle GCE = \angle F = 30^{\circ}$$

In ΔCOD,

$$\angle OCD + \angle ODC + \angle COD = 180^{\circ}$$
 (Angle sum property)
 $\angle GCE + \angle BDH + x = 180^{\circ}$
 $30^{\circ} + 50^{\circ} + x = 180^{\circ}$
 $80^{\circ} + x = 180^{\circ}$
 $x = 180^{\circ} - 80^{\circ} = 100^{\circ}$

2. ABCDE is a regular pentagon. The bisector of angle A meets the side CD at M (Fig.).

Find ∠AMC [NCERT Exemplar]

∴
$$\angle$$
MAB = $\frac{1}{2}$ x 108° = 54°

In ■ABCM,

$$\angle$$
MAB + \angle ABC + \angle BCM + \angle AMC = 360°

(Sum of angles of a quadrilateral is 360°)

$$54^{\circ} + 108^{\circ} + 108^{\circ} + \angle AMC = 360^{\circ}$$

$$\angle AMC = 360^{\circ} - 270^{\circ} = 90^{\circ}$$

21

ABCD is a rhombus such that the perpendicular bisector of AB passes through D
 (Fig.). Find the angles of the rhombus.

[NCERT Exemplar]

[Hint: Join BD. Then AABD is equilateral.]

Sol. Let ABCD be a rhombus in which DE is perpendicular bisect or of AB. Join BD. (Fig.) I n ΔADE and ΔBDE

AE = EB

(DE is perpendicular bisect or of AB)

DE = DE (Common)
$$\angle AED = \angle BED$$
 (Each 90°)
$$\Delta ADE = \Delta BDE$$
 (SAS)

$$AD = BD$$
 (CPCT)

So, AABD and ABCD are equilateral.

$$\angle A = \angle C = 60^{\circ}$$
 (All angles of equilateral triangle are 60°)
 $\angle A + \angle D = 180^{\circ}$ (Adj acent angles are supplementary)

$$60^{\circ} + \angle D = 180^{\circ}$$

\(\angle D = 180^{\circ} - 60^{\circ} = 120^{\circ}\)

Hence, $\angle A = \angle C = 60^{\circ}$ and $\angle B = \angle D = 120^{\circ}$.

A regular pentagon ABCDE and a square ABFG are formed on opposite sides of AB.
 (Fig.) Find ∠BCF.

[NCERT Exemplar]

Sol. Each interior angle of regular pent agon
$$=\frac{(2 \times 5-4)}{5} \times 90$$

 $=\frac{(10-4) \times 90}{5} \times 108^{0}$

Since ABFG is a square,

Now,

Therefore,
$$\angle CBF = 360^{\circ} - (108^{\circ} + 90^{\circ})$$

 $\angle CBF = 360^{\circ} - 198^{\circ} = 162^{\circ}$

(All sides of square are equal)

(All sides of regular pentagon are equal)

$$\therefore \qquad \qquad \mathsf{BF} = \mathsf{BC} \qquad \qquad ...(\mathsf{i})$$

In ΔCBF,

$$FB = BC$$
 (From (i))
 $\angle CFB = \angle BCF = x$

(Angles opposite to equal sides)

$$x + x + 162^{\circ} = 180^{\circ}$$

$$2x = 180^{\circ} - 162^{\circ}$$

$$2x = 18^{\circ} \Rightarrow x = 9^{\circ}$$

I. Value Based Questions.

- 1. (a) The four angles of a quadrilateral are as 3:5:7:9. Find the angles.
 - (b) Is an equilateral triangle a regular polygon? Why?

Sol. (a) Let
$$\angle A = 3x$$
, $\angle B = 5x$, $\angle C = 7x$ and $\angle D = 9x$

We know that, in a quadrilateral

$$\angle A + \angle B + \angle C + \angle D = 360^{\circ}$$

Then,
$$3x + 5x + 7x + 9x = 360^{\circ}$$

$$24x = 360^{\circ}$$

$$x = \frac{360^{\circ}}{24} = 15^{\circ}$$

Ther ef or e,

$$\angle A = 3x = 3 \times 15^{\circ} = 45^{\circ}$$

$$\angle B = 5x = 5 \times 15^{\circ} = 75^{\circ}$$

$$\angle C = 7x = 7 \times 15^{\circ} = 105^{\circ}$$

and

$$\angle D = 9x = 9 \times 15^{\circ} = 135^{\circ}$$

(b) Yes, an equilateral triangle is a regular polygon because it is both equiangular and equilateral.

Next Generation School